منابع مشابه
Fitting’s Lemma for Z/2-graded Modules
Let φ : Rm → Rd be a map of free modules over a commutative ring R. Fitting’s Lemma shows that the “Fitting ideal,” the ideal of d × d minors of φ, annihilates the cokernel of φ and is a good approximation to the whole annihilator in a certain sense. In characteristic 0 we define a Fitting ideal in the more general case of a map of graded free modules over a Z/2graded skew-commutative algebra a...
متن کاملThe isomorphism problem for commutative monoid rings’
By substantial changes and corrections in Demushkin’s old paper the essentially final positive answer to the isomorphism problem for monoid rings of submonoids of Z’ is obtained. This means that the underlying monoid is shown to be determined (up to isomorphism) by the corresponding monoid ring. Thereafter the positive answer to the analogous question for the ‘dual’ objects descrete Hodge algeb...
متن کاملMultivariate Hensel’s Lemma for Complete Rings
In this set of notes, we prove that a complete ring satisfies the multivariate Hensel’s lemma (Theorem 1.11). The result can be seen as a formal version of the implicit function theorem. We make this connection precise in §3. The section on completion follows the Stacks project [4], since most textbooks on this subject assumes Noetherian property. Our exposition of Hensel’s lemma largely follow...
متن کاملSemisimple Strongly Graded Rings
Let G be a finite group and R a strongly G-graded ring. The question of when R is semisimple (meaning in this paper semisimple artinian) has been studied by several authors. The most classical result is Maschke’s Theorem for group rings. For crossed products over fields there is a satisfactory answer given by Aljadeff and Robinson [3]. Another partial answer for skew group rings was given by Al...
متن کاملGraded Rings and Modules
1 Definitions Definition 1. A graded ring is a ring S together with a set of subgroups Sd, d ≥ 0 such that S = ⊕ d≥0 Sd as an abelian group, and st ∈ Sd+e for all s ∈ Sd, t ∈ Se. One can prove that 1 ∈ S0 and if S is a domain then any unit of S also belongs to S0. A homogenous ideal of S is an ideal a with the property that for any f ∈ a we also have fd ∈ a for all d ≥ 0. A morphism of graded r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2016
ISSN: 0002-9939,1088-6826
DOI: 10.1090/proc/13276